
As more functionality is moved to single
processors, embedded software develop-
ers are having to build in more func-

tionality more quickly and with greater
performance. In this kind of environment, they
need tools that provide easier and more robust
methods for developing and optimising systems.

No longer can a developer get along with a
basic assembler, simple linker and rudimentary
debugger. Embedded software development
today requires not only support for high level
languages, such as C/C++, but also ways to see
how software and target processor interact in
order to help debug and optimise programs.

One modern architecture that can take
over many functions in a system is Analog
Devices’ Blackfin processor. Blackfin com-
bines signal processing attributes, like dual
MACs, with classic risc processor characteris-
tics, such as a memory management capability
that facilitates simplified microprocessor type
programming modes and styles.

To support program development for
Blackfin, CROSSCORE – Analog Devices’
development tools product line – provides the
VisualDSP++ integrated development and
debug environment (IDDE) and EZ-KIT Lite
evaluation systems, as well as pci and usb emu-
lators for rapid on chip debugging.

Statistical profiling is one feature that can
speed the development and optimisation of pro-
grams. Traditional profiling techniques rely on
instrumenting user code in order to gather sta-
tistics on program execution performance. The
instrumentation code can affect system per-
formance, especially in highly tuned code, and
often resources aren’t available for capturing the
data. With statistical profiling, the debugger can
sample the program counter non intrusively
while the processor is running. The longer the
sampling time, the more accurately the statisti-
cal profile will match the actual profile.

The profile can be used to answer ques-
tions about system behaviour such as ‘where is
my application spending most of its time?’ and
‘how much time is spent executing any partic-
ular function, high level language instruction,
or assembly level instruction?’.

The EZ-KIT Lite system comes with an
evaluation suite of the VisualDSP++ debugger.
This has a window that can be used to display
the profile with varying levels of granularity.
Each program function is shown, along with the
percentage of total run time consumed by that

function. The C source for the function is also
shown and the assembly instructions associated
with each line of C code and the contribution
for each assembly instruction are available.

With this information, a programmer can
quickly identify what parts of the program
make the largest contributions to overall per-
formance. Developers can then concentrate
their efforts accordingly.

But speed isn’t the only design criterion;
program size can be just as important. The
C/C++ compiler includes options to control
optimisations to favour size or speed, as well as
pragmas (#pragma optimise_for_speed,
#pragma optimise_for_size) that control opti-
misation decisions on a function basis.

For example, a developer may want to gen-
erally optimise for space, while optimising for
speed a core processing function that the pro-
filer highlighted as a significant contributor to
execution time.

Feedback about program size is provided to
users by the linker in a map file. VisualDSP++
also presents this information graphically
through the memory interface in the Expert
Linker. The post link display shows each section
that was mapped into memory, as well as its size.
When profiling data is available, the Expert
Linker will use colour to identify which sections
are program ‘hot spots’ – the redder, the hotter.

In an embedded system with a memory hier-
archy, where access to some memory locations is
slower than access to others, this display can
highlight code that executed frequently from
external memory. Using the same Expert Linker
display, the developer can drag and drop a code
section from one memory segment to another.

The full VisualDSP++ toolset includes sim-
ulators for all processors. There are super fast
functional simulators that can develop and test
algorithms before a hardware platform is avail-
able. And there are cycle accurate simulators
that model all behaviour of the core processor.

The cycle accurate simulator can be used to
get exact (as opposed to statistical) profiling
information. It can also be used to understand
the behaviour of the hardware below the
instruction level.

To reach high clock rates, processors exe-
cute instructions in a pipeline that operates
much like an assembly line in a factory. At each
clock cycle, instructions move from one stage
to the next. As long as the pipeline stays full,
the processor will effectively execute an
instruction each cycle. If something happens
to stall an instruction in the pipe, such as need-
ing data from a previous instruction, effective
throughput will be lower.

To achieve maximum performance, pro-
grammers need to see and understand the
pipeline. The VisualDSP++ debugger has a
Pipeline Viewer that follows the migration of
each instruction through the pipeline, high-
lighting ‘bubbles’ that can affect performance.

In the Pipeline Viewer, change of flow is
also monitored because jumps and branches
can invalidate instructions that are in the
pipeline but are not on the path that is taken.
Stalls, bubbles and kills are all emphasised, with
detailed information available with mouse over,
so the developer can get an understanding of
how the program interacts with the processor.

The C/C++ compiler has many ways for a
user to control low level system behaviour
whilst programming with a high level lan-
guage. It has compilation controls at invoca-
tion to direct the compiler to optimise and
whether to favour size or speed. In addition to
the pragmas mentioned above, other pragmas

give the compiler information that can be used
to generate more efficient code. There are also
compiler built in operations that allow the user
to read and write system registers. And there is
the ability to insert assembly instructions
directly into the program if needed.

The compiler can generate its best code
when it has the most information about how
a program will behave. The VisualDSP++
C/C++ compiler has a Profile Guided Optimi-
sation feature that gets direct feedback on the
running of a program to make decisions on
how best to optimise.

The IDDE guides users through the steps
needed to use Profile Guided Optimisation
effectively. The user first builds a version of the
program that is instrumented to collect infor-
mation the compiler can use for optimisation
decisions – for example, which sides of branches
are taken most frequently or whether most vec-
tors processed are even length.

The program is then executed in the simu-
lator using a set of ‘training data’; the more
training data matches actual data, the better
the optimisations will be. Profile data is then
fed into the compiler when the program is
rebuilt and the compiler will generate code
that executes fastest for the representative data.

Compiler improvements can be dramatic
for control code, where there may be tests for
error conditions which should never occur
under normal circumstances. The compiler can
retain the code for the error cases whilst opti-
mising the error free path through the program.
With signal processing code, the compiler can
choose loop optimisation techniques best
suited for the data the program will process.

As embedded processors handle more sys-
tem functionality, better and more effective
tools are needed to help users quickly develop
and optimise performance. VisualDSP++ is
one example of a tool suite that gives the user
many ways to visualise performance. And with
Profile Guided Optimisation, the compiler
can make direct use of system performance
information to optimise programs

Author profile:
Ken Butler is Assembler and Simulator Devel-
opment Manager for Analog Devices.

Take a free 90 day test drive of VisualDSP++ by
downloading a test drive or requesting a cd at:
www.analog.com/processors/tools/testdrive

NE

Smaller, faster, better
“The profile can be

used to answer

questions about

system behaviour

such as ‘where is

my application

spending most of

its time?’.”

How development tools

can help software

engineers to produce

more efficient code for

embedded systems.

By Ken Butler.

Sponsored Tutorial

For more information on
Analog Devices’ CROSSCORE

development tools, go to
www.analog.com/
processors/tools

Advertisement Feature Embedded Processors Sponsored Tutorial

New Electronics 10 February 2004 New Electronics 10 February 2004 5150

Analog Devices’ CROSSWARE tool range includes high performance usb based emulators
to provide a portable, non intrusive target based debugging solution.

